System Performance with Wi-Fi Connection Data

Aidan Grenville, **Willem Klumpenhouwer**, Natalie Chui, Amer Shalaby

TRB Annual Meeting | January 10, 2023

ADINA

TRANSIT ANALYTICS LAB Photo Credit: Jed De La Cruz

Requires Train Location Information

headway regularity: How consistently are trains spaced apart?

brownian motion: How does the randomness on a line evolve downstream?

missed trains: How often are devices missing a train?

indexing and aggregation over various temporal spans (month, week, period, hour)

Doesn't Require Train Location Information

platform wait time: How long and consistent is the platform wait time?

origin-destination regularity: How consistent is the journey between two points?

rider regularity: How consistent is a given device's experience over a month?

incident impact: How much extra wait time is caused during an incident?

incident behaviour: How do devices react during an incident?

Wait Time Estimation

Observed On-Plaform Waiting Time Distributions

Wait time: First platform association to last platform disassociation

Standard Deviation of Device On-Platform Wait Time for Trips Originating At Station

Median Platform Wait Times by Station, Line 2, Weekdays

Median calculated per station for each hour; white indicates insufficient or unavailable data

Median Platform Wait Times by Station, Line 2, Weekends

Median calculated per station for each hour; white indicates insufficient or unavailable data

Travel Time Variability

	4 to 8 Stations	9 to 14 Stations	15+ Stations
No Transfer	Short, no transfer	Medium, no transfer	Long, no transfer
One Transfer	Short, one transfer	Medium, one transfer	Long, one transfer

All devices traveling on each station pair are aggregated and the station pair's travel time **Coefficient of Variation** is calculated.

Museum – St. Andrew Finch – Wellesley Bathurst – Union

Station pairs are **classified** and the Coefficient of Variation distribution curve for each category is plotted.

Coefficient of Variation

AM Rush - WiFi Coefficient of Variation by Station Pair

AG

AM Rush - Difference of WiFi and R5 Mean Times 7-9 AM, Weekdays, May 1-31, 2022 Number of Transfers 0 1 0.20 0.15 Density 0.10 0.05 0.00 -22 12 20 .9 Ъ, .1 З n Л 2 5 0 З .ь - 64 WiFi Mean - GTFS Mean (Minutes)

Most journey pairs are faster than predicted, but *especially* trips with a transfer.

"The Buffer Time Index (BTI) expresses the amount of extra "buffer" time needed to be on-time 95 percent of the time (late one day per month)" - US DOT

Buffer Time Index =
$$\frac{t_{95} - t_{\mu}}{t_{\mu}}$$

Buffer Time Index by Journey Length

May 1-31, 2022, AM Peak Period (7-9 AM, Weekdays)

Buffer time inversely proportional to journey time increases with transfers and journey length.

Subway Arrival Detection

Net Through-Trip Device Associations at Sherbourne Station

Toronto's Line 2 towards Kipling - August 26, 2022 1330-1430 Peaks are identified with orange circles; actual arrival and departures indicated with grey bars

- Passenger-based metrics > Vehicle-based metrics
- Wi-Fi/Cellular/Bluetooth yields actual travel times
- Allows for more advanced metrics on reliability
- Signal analysis can be used to detect train arrivals

Aidan Grenville, Willem Klumpenhouwer, Natalie Chui, Amer Shalaby aidan.grenville@mail.utoronto.ca willem.klumpenhouwer@utoronto.ca

canada

ADINA

TA