

Nexus

An Agent-Based Simulation Platform for Planning & Management of Multimodal Transit Systems

Siva Srikukenthiran

Outline

- Introduction
- Overview of Nexus
- Use Cases
- Future Plan

Introduction

What is Nexus?

- Nexus is a
 - Software platform combining big data, simulation and other models/analytics to support transit planning and management
 - Built on a services architecture to allow it to run across a network of computers

Motivation for Nexus

- Devising response measures require high-fidelity modelling systems with capability to:
 - Properly represent dynamic performance of individual transit lines, stations and system as a whole (including interface spots)
 - Realistically model passenger travel behaviour under normal and irregular conditions
 - Realistically represent scenarios of disruptions and emergencies, and response strategies

What can Nexus do?

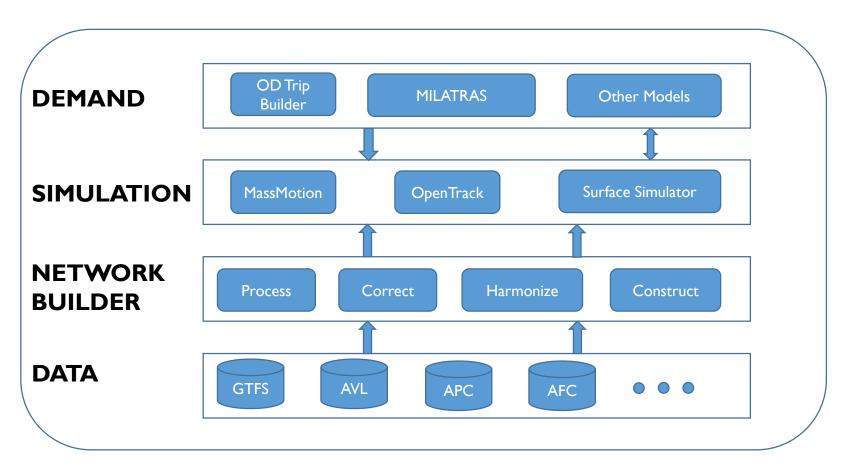
- Nexus aims at allowing the user to
 - Quickly build or update a transit network model based on GTFS and other big transit data (important for short range planning, scheduling and management)
 - Simulate operations and demand
 - of all transit modes: rail, bus, streetcar and pedestrian
 - at various spatial levels: rail platform, transit hub, route, corridor, network
 - at different resolution levels: microscopic, mesoscopic, hybrid
 - Represent system and user behaviours under normal conditions or scenarios of service disruption and emergencies

Potential Areas of Application

- Capacity/Performance Analysis
 - Capacity analysis of subway lines under ATC and other operational improvements
- Capacity and Expansion Studies
 - Impact is traditionally tested in isolation Nexus offers the ability to test the impact in context of surrounding network

Potential Areas of Application

- Integrated Route Planning & Scheduling
 - Transfer optimization and accelerated operations
- Network Resilience & Response
 - Current analysis is performed using simplified network models, and can only handle complete removals of network segments
 - Nexus will allow for a broader range of examination, including testing of transient disruptions and accounting for passenger behaviour


Nexus Architecture

Nexus Framework

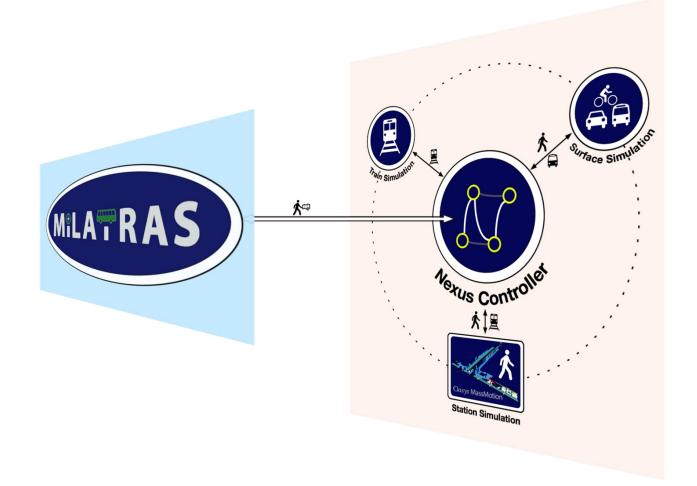
Description of Nexus

Description of Nexus

Nexus Main Features

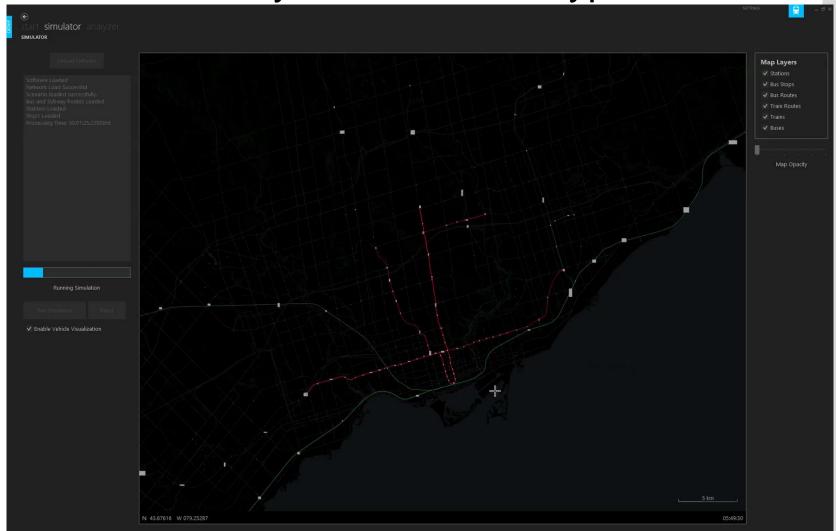
Live network-view dashboard visualizing key network service performance.

MILATRAS


MILATRAS

- Multi-agent learning based transit assignment
- Models departure time, stop and path choices simultaneously using the Markovian Decision Process and Reinforcement Learning-based techniques
- Cognitive model to represent the learning process of users as they choose stop, path, departure time
- Agents learn from prior experience, update trip choices with each iteration
- Allows for re-routing midway based on new information

The Nexus Platform


Use Cases

TTC Case Study – *Nexus* Prototype

Previous Studies

Capacity analysis and flow management

Other

Capacity analysis of the USRC

Hub and network flow management

Specialized route operations

Crowding relief benefits of the DRL

Rail disruption management

Transfer optimization

Crowding analysis of the B-Y Station

Integration with activity based demand model

The Future

Future of Nexus

 Web accessible cloud-based implementation on modern cloud services (AWS, Azure)

Incorporation of an updated version of MILATRAS

 Integration of mesoscopic station and rail simulators being developed by TAL

Questions?

