Spur

(Simulation for Planning and Understanding Railways) A Modular, Data-Driven Mesoscopic Simulator for Stochastic Railway Networks

Transit Analytics Lab Workshop on Rail Analytics and Simulation Research - Jan. 26, 2023

Peter Lai, Willem Klumpenhouwer

https://github.com/transit-analytics-lab/spur

Current Landscape of Railway Simulations

Microscopic

- Highly detailed and realistic
- Long computation time and complex
 to set up, not suited
 for network-level
 analysis

Mesoscopic

- Useful results with minimal investment and fast computation
- Detailed where
 relevant, flexible in
 scale

Macroscopic

- Fast computation
- Only high-level,
 aggregate statistics
 about
 network-level
 performance

Aspect	<u>Micro</u> scopic
Infrastructure	Realistic curves/grades
Control	Specified in detail
Movements	Detailed, physics-based
Data Requirements	Track-level detail
Setup Difficulty	Requires detailed railway engineering knowledge
Network Size	Corridor level
Running Time	Extended

	<u>Meso</u> scopic
	Abstracted to nodes/edges
	Simplified logic
	Based on fundamental properties
	Network-level detail
/	Fast prototyping, minimal railway knowledge
	Regional/national
	Short (possibly real-time)

Mesoscopic Railway Simulation in the Literature

Work	Scope	Application	Stochasticity	Availability
[1] Saidi et al. (2019)	Line	Control strategy evaluation	No	Proprietary
[2] Marinov and Viegas (2011)	Line + yards	Freight traffic	Yes	Proprietary
[3] Zhong et al. (2018)	Passenger stations	Capacity analysis	Yes	Proprietary
[4] Quaglietta et al. (2011)	Line + yards	Design and decision support	Yes	Proprietary
[5] Diviš and Kavička (2015)	Nodes	Capacity analysis	Yes	Proprietary
[6] Fabris et al. (2014)	Network	Timetable generation	Yes	Proprietary
[7] Kavička and Krýže (2021)	Network	Route planning	No	Proprietary

Spur: A flexible, mesoscopic railway simulation platform for rapid prototyping, simulation, and analysis.

"Big Picture" Railway Modelling

Test "outside the box" ideas

Look for larger effects

New service planning

Network capacity analysis

Simulation-driven optimization Timetables | Routing | Control algorithms

Disruption management

Integration with pedestrian flow simulations (Nexus)

Architecture

Network Graph (NetworkX)

Components (Resources)

- Handles agent requests
- Determines traversal behaviour

Example: TTC Line 4

0	Bayview Station - Eastbound Platform to Bessarion Sta
1	Bayview Station - Westbound Platform to Sheppard-Yonge
2	Bessarion Station - Eastbound Platform to Leslie Sta
3	Bessarion Station - Westbound Platform to Bayview Stat
4	Don Mills Station - Westbound Platform to Leslie Stat
5	Leslie Station - Eastbound Platform to Don Mills
6	Leslie Station - Westbound Platform to Bessarion Stat
7	Sheppard-Yonge Station - Eastbound Platform to Bayview Sta

ie-west-N	-west-N leslie-east-donmills-west-N			
Leslie W	E	(v	Don Mill	ls E
lie-west-S	leslie-	east-donmills-wes	it-S	
	pair	pair_id	tr	avel
			mean	std
ation - Eastbound	Platform	14531 to 14532	87.0	0.0
e Station - Subway	Platform	14538 to 14539	1 <mark>61.</mark> 0	0.0
ation - Eastbound	Platform	14532 to 14533	75.0	0.0
ition - Westbound	Platform	14537 to 14538	113.0	0.0
ntion - Westbound	Platform	14535 to 14536	125.0	0.0
s Station - Subway	Platform	14533 to 14534	159.0	0.0
ation - Westbound	Platform	14536 to 14537	105.0	0.0
ation - Eastbound	Platform	14530 to 14531	183.0	0.0

Ongoing & Future Work

Short-term:

. . .

Simulating the entire GO Train network in Spur

- New components
- Calibration and validation
- Automating GTFS import

Medium to long-term:

- Full graphical interface for model construction
- Central controller for more complex dispatching tasks

Simulating the GO Network with Spur

Contributions and questions welcome!

https://github.com/transit-analytics-lab/spur

References

- S. Saidi, N. H. M. Wilson, H. N. Koutsopoulos, and J. Zhao, "Mesoscopic Modeling of Train Operations: Application to the MBTA [1] Red Line," in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct. 2019, pp. 98–103. doi: 10.1109/ITSC.2019.8917313.
- [2] M. Marinov and J. Viegas, "A mesoscopic simulation modelling methodology for analyzing and evaluating freight train operations in a rail network," Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 516–539, Jan. 2011, doi: 10.1016/j.simpat.2010.08.009.
- M. Zhong, Y. Yue, and D. Li, "Analyzing and Evaluating Infrastructure Capacity of Railway Passenger Station by Mesoscopic [3] Simulation Method," in 2018 International Conference on Intelligent Rail Transportation (ICIRT), Singapore, Dec. 2018, pp. 1–5. doi: 10.1109/ICIRT.2018.8641593.
- [4] E. Quaglietta, L. D'Acierno, V. Punzo, R. Nardone, and N. Mazzocca, "A simulation framework for supporting design and real-time decisional phases in railway systems," in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, Oct. 2011, pp. 846–851. doi: 10.1109/ITSC.2011.6082913.
- R. Diviš and A. Kavička, "Design and development of a mesoscopic simulator specialized in investigating capacities of railway [5] nodes," presented at the 27th European Modeling and Simulation Symposium, Sep. 2015, pp. 52–57.
- S. de Fabris, G. Longo, G. Medeossi, and R. Pesenti, "Automatic generation of railway timetables based on a mesoscopic [6] infrastructure model," Journal of Rail Transport Planning & Management, vol. 4, no. 1–2, pp. 2–13, Aug. 2014, doi: 10.1016/j.jrtpm.2014.04.001.
- A. Kavička and P. Krýže, "Dynamic Automated Search of Shunting Routes within Mesoscopic Rail-Traffic Simulators," Journal of [7] Advanced Transportation, vol. 2021, pp. 1–22, Apr. 2021, doi: 10.1155/2021/8840516.